*     Elemen atau anggota (bahasa Inggris: member) dari suatu himpunan dalam matematika adalah objek-objek matematika tertentu yang membentuk himpunan itu.
Dalam matematika, himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun hal ini merupakan ide yang sederhana, tidak salah jika himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi mengenai himpunan sangatlah berguna.
*      Himpunan diperkenalkan oleh George Cantor (1845 – 1918), seorang ahli matematika Jerman. . Ia menyatakan bahwa himpunan adalah kumpulan atas objek-objek. Objek tersebut dapat berupa benda abstrak maupun kongkret. Pada dasarnya benda-benda dalam suatu himpunan tidak harus mempunyai kesamaan sifat/karakter atau Himpunan merupakan kumpulan benda-benda atau objek-objek yang didefinisikan dengan jelas. Anggota atau elemen adalah benda-benda atau objek-objek yang termasuk dalam sebuah himpunan.
Contoh:
Himpunan yang merupakan himpunan:
  • 1. Himpunan anak yang berusia 12 tahun

2. Himpunan bilangan asli genap
3. Himpunan pulau-pulau di Indonesia

Himpunan yang bukan merupakan himpunan:
1. Himpunan anak-anak malas
2.  Himpunan wanita-wanita cantik
3. Himpunan lukisan indah

Ada empat cara untuk menyatakan suatu penulisan himpunan, yaitu:
1)      Dengan menyebutkan semua anggotanya (roster) yang diletakkan di dalam sepasang tanda kurung kurawal, dan di antara setiap anggotanya dipisahkan dengan tanda koma. Cara ini disebut juga cara Tabulasi. Contoh:
A = {a, i, u, e, o}
B = {Senin, Selasa, Rabu, Kamis, Jumat, Sabtu, Minggu}

2)      Menyebutkan syarat anggota-anggotanya, cara ini disebut juga cara Deskripsi. Contoh:
Ambil bilangan asli kurang dari 5
A = bilangan asli kurang dari 5

3)      Notasi Pembentuk Himpunan : dengan menuliskan ciri-ciri umum atau sifat-sifat umum (role) dari anggotanya. Contoh Soal :
Nyatakan dengan notasi himpunan dengan menuliskan tiap-tiap anggotanya dan sifat-sifatnya himpunan berikut ini :
A adalah himpunan bilangan asli antara 1 dan 6
Penyelesaian :
A adalah himpunan bilangan asli antara 1 dan 6

Dengan menulis tiap-tiap anggotanya
A = {2, 3, 4, 5}
Dengan menulis sifat-sifatnya
A = {x | 1 < x < 6, x  Asli}

4)      Himpunan juga dapat di sajikan secara grafis (Diagram Venn).
Penyajian himpunan dengan diagram Venn ditemukan oleh seorang ahli matematika Inggris bernama John Venn tahun 1881. Himpunan semesta digambarkan dengan segiempat dan himpunan lainnya dengan lingkaran di dalam segiempat tersebut.

·         Keanggotaan Himpunan
Nama suatu himpunan biasanya menggunakan huruf kapital seperti A, B, C, dan X. Sedangkan anggota suatu himpunan biasanya dinotasikan dengan huruf kecil seperti a, b, c, x, dan y. Misalnya H adalah himpunan semua huruf hidup dalam alfabet Latin maka benda-benda yang termasuk dalam himpunan H adalah a, i, u, e, dan o. Benda-benda yang masuk dalam suatu himpunan disebut sebagai anggota himpunan tersebut. Notasi untuk menyatakan anggota suatu himpunan adalah “” sedangkan notasi untuk bukan anggota adalah “”. Dengan demikian a H, iH, u  H, e  H, dan o  H sedangkan b  H, c  H dan d  H. Istilah anggota yang digunakan di atas dapat diganti dengan istilah elemen atau unsur.

Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:
SIMBOL
ARTI
Atau
Himpunan kosong

Operasi  gabungan dua himpunan

Operasi irisan dua himpunan
, , ,
Subhimpunan, subhimpunan sejati, superhimpunan, superhimpunan sejati

Komplemen


Macam-Macam Himpunan

1)      Himpunan Bagian (Subset).
Himpunan A dikatakan  himpunan  bagian  (subset)  dari  himpunan B ditulis A B ”, jika setiap anggota A merupakan anggota dari B. Syarat :

A B, dibaca : A himpunan bagian dari B
A B, dibaca : A bukan himpunan bagian dari B
  A dibaca : B bukan himpunan bagian dari A
  A dibaca : B bukan himpunan bagian dari A

Contoh :
Misal   A = { 1,2,3,4,5 } dan B = { 2,4} maka  B A
Sebab  setiap  elemen  dalam  B merupakan  elemen  dalam A,  tetapi  tidak sebaliknya.
Penjelasan : Dari definisi diatas himpunan bagian harus mempunyai unsur himpunan A  juga merupakan unsur himpunan B.artinya kedua himpunan itu harus saling berkaitan.

2)      Himpunan Kosong (Nullset)
Himpunan kosong adalah himpunan yang tidak mempunyai unsur anggota yang sama sama sekali.
Syarat :

Himpunan kosong = A atau { }
Himpunan kosong adalah tunggal
Himpunan kosong merupakan himpunan bagian dari setiap himpunan

Perhatikan : himpunan kosong tidak boleh di nyatakan dengan { 0 }.
Sebab : { 0 } ≠ { }
Penjelasan : dari definisi diatas himpunan kosong adalah himpunan yang tidak mempunyai satupun anggota, dan biasanya himpunan kosong dinotasikan dengan huruf yunani ø (phi).


3)      Himpunan Semesta
Himpunan semesta biasanya dilambangkan dengan “U” atau “S” (Universum) yang berarti himpunan yang memuat semua anggota yang dibicarakan atau kata lainya himpunan dari objek yang sedang dibicarakan.

4)      Himpunan Sama (Equal)
Bila setiap anggota himpunan A juga merupakan anggota himpunan B, begitu pula sebaliknya.di notasikan dengan A=B
Syarat :
 Dua buah himpunan anggotanya harus sama.
Contoh :
A ={ c,d,e}    B={ c,d,e }   Maka A = B
Penjelasan : Himpunan equal atau himpunan sama,memiliki dua buah himpunan yang anggotanya sama misalkan anggota himpunan A {c,d,e} maka himpunan B pun akan memiliki anggota yaitu { c,d,e }.

5)      Himpunan Lepas
Himpunan lepas adalah suatu himpunan yang anggota-anggotanya tidak ada yang sama.
Contoh
 C = {1, 3, 5, 7}   dan  D = {2, 4, 6}  Maka himpunan C dan himpunan D saling lepas.
Catatan : Dua himpunan yang tidak kosong dikatakan saling lepas jika kedua himpunan itu tidak mempunyai satu pun anggota yang sama

6)      Himpunan Komplemen (Complement set)
Himpunan komplemen dapat di nyatakan dengan notasi AC . Himpunan komplemen jika di misalkan S = {1,2,3,4,5,6,7} dan A = {3,4,5} maka A U. Himpunan {1,2,6,7} juga merupakan komplemen, jadi AC = {1,2,6,7}. Dengan notasi pembentuk himpunan ditulis :
AC = {x│x Є U, x Є A}

7)     Himpunan Ekuivalen (Equal Set)
Himpunan ekuivalen adalah himpunan yang anggotanya sama banyak dengan himpunan lain.
Syarat : Bilangan cardinal dinyatakan dengan notasi n (A) A≈B, dikatakan sederajat atau ekivalen, jika himpunan A ekivalen dengan himpunan B,
Contoh :
A = { w,x,y,z }→n (A) = 4
B = {  r,s,t,u   } →n  (B) = 4

Maka n (A) =n (B) →A≈B
Penjelasan : himpunan ekivalen mempunyai bilangan cardinal dari himpunan tersebut, bila himpunan A  beranggotakan 4 karakter maka himpunan B pun beranggotakan 4.

v  Operasi pada Himpunan
a)      Gabungan
Gabungan (union) dari himpunan A dan B adalah himpunan yang setiap anggotanya merupakan anggota himpunan A atau himpunan B.  Dinotasikan A  B
Notasi :  A   B = {x | x Є A atau  x Є B}

b)      Irisan
Irisan (intersection) dari himpunan A dan B adalah himpunan yang setiap anggotanya merupakan anggota dari himpunan A dan anggota himpunan B.
Notasi :  A   B = {x | x Є  A dan x Є B}

c)      Komplemen
Komplemen himpunan A terhadap himpunan semesta S adalah himpunan yang anggotanya merupakan anggota S yang bukan anggota A. Dinotasikan Ac
Notasi : Ac = {x | x Є S dan  x Є A} atau

d)     Selisih
Selisih himpunan A dan B adalah himpunan yang anggotanya merupakan anggota himpunan A dan bukan anggota himpunan B. Selisih himpunan A dan B adalah komplemen himpunan B terhadap himpunan A. Dinotasikan A-B
Notasi : A – B = {x | x Є A dan  x Є B}


e)    Hasil Kali Kartesius ( cartesion Product )
Hasil kali kartesius himpunan A dan B, dinotasikan A x B, adalah himpunan yang anggotanya semua pasangan terurut (a,b) dimana a anggota A dan b anggota B
Secara matematis dituliskan :
A x B = {(a,b)| a Є A dan b Є B}.

*      Bilangan adalah kumpulan angka yang menempati urutan dari sebelah kanan sebagai nilai satuan, puluhan, ratusan, ribuan dan seterusnya.
Simbol dan lambang yang dipakai untuk mewakili suatu bilangan disebut dengan angka atau lambang bilangan. Didalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, serta bilangan kompleks.

Macam-macam Bilangan

1. Bilangan Cacah
Bilangan cacah adalah bilangan yang dimulai dari angka 0 dan selalu bertambah 1 dengan bilangan setelahnya.
contoh : 0, 1, 2, 3, 4 dan seterusnya.

2. Bilangan Asli
Bilangan asli adalah bilangan yang dimulai dari angka 1 dan bertambah 1.
contoh : 1, 2, 3, 4, 5 dan seterusnya.

3. Pecahan Biasa
Pecahan biasa adalah bilangan yang dapat dinyatakan dalam a/b, dengan a dan b merupakan bilangan bulat dan b ≠ 0. Bilangan a disebut dengan pembilang sedangkan bilangan b disebut dengan penyebut.
contoh : 7/3, 1/3, 5/66

4. Bilangan Bulat
Bilangan bulat adalah himpunan bilangan bulat negatif, bilangan nol dan bilangan bulat positif.
contoh : ...., -3, -2, -1, 0, 1, 2, 3, .....

5. Bilangan Prima
Bilangan prima adalah seluruh bilangan asli yang hanya mempunyai faktor pembagi satu dan bilangan itu sendiri atau bilangan yang hanya dapat dibagi oleh 1 dan bilangan itu sendiri.
contoh : 2, 3, 5, 7, 11,....

6. Bilangan Komposit
Bilangan komposit adalah seluruh bilangan asli kecuali 1 dan tidak termasuk dalam bilangan prima.
contoh : 4, 6, 8, 9, 10,.....

7. Bilangan Rasional.
Bilangan rasional adalah semua bilangan yang dinyatakan dalam bentuk a/b, dengan a dan b merupakan anggota bilangan bulat serta b ≠ 0.

8. Bilangan Irasional
Bilangan irasional adalah bilangan yang tidak dapat dinyatakan dalam bentuk a/b, dengan a dan b merupakan anggota bilangan bulat serta b ≠ 0. merupakan kebalikan bilangan rasional.

9. Bilangan Riil
Bilangan riil adalah merupakan gabungan dari bilangan rasional dengan bilangan irasional.

10. Bilangan Desimal
Bilangan desimal adalah bilangan yang mempunyai bentuk ciri ciri antar bilangan dipisahkan dengan tanda koma sebanyak satu.

11. Bilangan Pangkat
Bilangan pangkat adalah bilangan yang dihasilkan dari mengalikan sebuah bilangan beberapa kali.

12. Bilangan Imajiner
Bilangan Imajiner atau yang dikenal dengan bilangan khayal adalah bilangan yang memiliki sifat  i2 = −1 . Dengan kata lain, bilangan tersebut memiliki akar negatif. Contoh : I = { i, 4i, 5i, ….. }

13 . Bilangan Kompleks
Bilangan kompleks ialah bilangan yang dinotasikan oleh a+bi , dimana a dan b ialah bilangan riil, dan i ialah suatu bilangan imajiner dimana i 2 = −1. Bilangan riil a disebut juga bagian riil dari bilangan kompleks, dan bilangan real b disebut bagian imajiner. Bila dalam satu bilangan kompleks, nilai b ialah 0, jadi bilangan kompleks itu menjadi sama juga dengan bilangan real a.
Untuk contoh, 3 + 2i merupakan bilangan kompleks dengan bagian riil 3 dan bagian imajiner 2i.

14. Bilangan Genap
Bilangan Genap adalah bilangan yang dapat dinyatakan dalam bentuk 2n dan bilangan itu habis dibagi dengan bilangan 2.
Contoh: {2, 4, 6, 8, 10, 12, ….}

15. Bilangan Ganjil
Bilangan Ganjil adalah bilangan yang dapat dinyatakan dalam bentuk 2n – 1 dan tidak habis dibagi dengan bilangan 2.
Contoh: {-3, -1, 1, 3, 5, 7, 9, 11, 13, 15, … }

16. Bilangan Nol
Bilangan 0 adalah satu angka kosong (0) untuk mewakili angka di angka. Peranan terpenting angka 0 ialah menjadi identitas untuk bilangan real, bulat, dan aljabar yang lain.

17. Bilangan Negatif
Bilangan negatif ialah suatu bilangan yang mempunyai nilai minus (-) atau negatif.
Contoh: { dan seterusnya -5, -4, -3, -2, -1 }

Demikianlah sekelumit uraian mengenai pengertian bilangan dan macam macam bilangan, Semoga bermanfaat bagi pembaca semua.

Komentar

Postingan populer dari blog ini

Baris dan Deret

MATRIKS LANJUTAN

Perihal Sebuah Misi